User Tools

Site Tools


error_corpus
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/xsl" href="lexUnit.xsl"?>
<lexUnit xmlns="http://framenet.icsi.berkeley.edu" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" frame="Error" frameID="652" status="Finished_Initial" POS="N" name="error.n" ID="8538" totalAnnotated="3" xsi:schemaLocation="../schema/lexUnit.xsd">
    <header>
        <corpus description="BNC2" name="BNC2" ID="111">
            <document description="bncp" name="bncp" ID="421"/>
        </corpus>
        <frame>
            <FE fgColor="FFFFFF" bgColor="FF69B4" type="Core" abbrev="Error" name="Error_type"/>
            <FE fgColor="FFFFFF" bgColor="004C99" type="Core" abbrev="Task" name="ML_Task"/>
            <FE fgColor="FFFFFF" bgColor="0000FF" type="Peripheral" abbrev="value" name="Error_value"/>
            <FE fgColor="FFFFFF" bgColor="99004C" type="Peripheral" abbrev="Algorithm" name="ML_Algorithm"/>
            <FE fgColor="FFFFFF" bgColor="009900" type="Peripheral" abbrev="Dataset" name="Dataset"/>
        </frame>
    </header>
    <definition>TThis frame describes type of error that coud be used for specific ML algorithm, that solves ML Task. The error value can be given for specific data.</definition>
    <lexeme POS="N" name="error"/>
 
 
    <subCorpus name="01-unannotated-1">
        <sentence corpID="111" docID="421" sentNo="1" paragNo="181" aPos="0" ID="1215438">
            <text>We present an efficient algorithm for computing the optimal two-dimensional region that minimizes the mean squared error of an objective numeric attribute in a given database.</text>
            <annotationSet cDate="05/02/2003 04:00:38 PDT Fri" status="MANUAL" ID="1877967">
                <layer rank="1" name="Target">
                    <label end="0" start="0" name="10.1023/A:1017980905332"/>
                    <label cBy="351" end="119" start="115" name="Target"/>
                    <label end="96" start="88" name="Target"/>
                </layer>
                <layer rank="1" name="FE"><label end="81" start="38" name="ML_Task"/>
                <label end="119" start="102" name="Error_type"/>
            </layer>
                <layer rank="1" name="GF"/>
                <layer rank="1" name="PT"/>
                <layer rank="1" name="Other"/>
                <layer rank="1" name="Sent"/>
                <layer rank="1" name="Verb"/>
            </annotationSet>
        </sentence>
        <sentence corpID="111" docID="421" sentNo="2" paragNo="181" aPos="0" ID="1215438">
            <text>We show how this metric can be used to detect untrustworthy training error estimates, and devise novel model selection strategies that exhibit theoretical guarantees against over-fitting (while still avoiding under-fitting).</text>
            <annotationSet cDate="05/02/2003 04:00:38 PDT Fri" status="MANUAL" ID="1877967">
                <layer rank="1" name="Target">
                    <label end="0" start="0" name="10.1023/A:1013947519741"/>
                    <label end="75" start="60" name="Target"/>
                </layer>
                <layer rank="1" name="FE"><label end="83" start="39" name="ML_Task"/>
                <label end="117" start="90" name="ML_Task"/>
                <label end="185" start="174" name="Error_type"/>
                <label end="221" start="209" name="Error_type"/>
            </layer>
                <layer rank="1" name="GF"/>
                <layer rank="1" name="PT"/>
                <layer rank="1" name="Other"/>
                <layer rank="1" name="Sent"/>
                <layer rank="1" name="Verb"/>
            </annotationSet>
        </sentence>
        <sentence corpID="111" docID="421" sentNo="3" paragNo="181" aPos="0" ID="1215438">
            <text>This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters(2006), the subgradient descent approach.</text>
            <annotationSet cDate="05/02/2003 04:00:38 PDT Fri" status="MANUAL" ID="1877967">
                <layer rank="1" name="Target">
                    <label end="0" start="0" name="10.1023/A:1012450327387"/>
                    <label end="25" start="16" name="Target"/>
                    <label end="68" start="49" name="Target"/>
                </layer>
                <layer rank="1" name="FE"><label end="75" start="73" name="ML_Task"/>
                <label end="111" start="86" name="ML_Algorithm"/>
                <label end="68" start="49" name="Error_type"/>
                <label end="138" start="122" name="Dataset"/>
            </layer>
                <layer rank="1" name="GF"/>
                <layer rank="1" name="PT"/>
                <layer rank="1" name="Other"/>
                <layer rank="1" name="Sent"/>
                <layer rank="1" name="Verb"/>
            </annotationSet>
        </sentence>
 
    </subCorpus>
</lexUnit>
error_corpus.txt · Last modified: 2016/03/18 12:12 by pj